function varargout = peakfinder (x0, sel, thresh, extrema,
include endpoints)
$PEAKFINDER Noise tolerant fast peak finding algorithm

% INPUTS:

% x0 - A real vector from the maxima will be found
(required)

% sel - The amount above surrounding data for a peak to be

o\

identified (default = (max(x0)-min(x0))/4). Larger
values mean

0\

the algorithm is more selective in finding peaks.
thresh - A threshold value which peaks must be larger
than to be

0\

3 maxima or smaller than to be minima.

% extrema - 1 if maxima are desired, -1 if minima are
desired

% (default = maxima, 1)

% include endpoints - If true the endpoints will be
included as

% possible extrema otherwise they will not be included
% (default = true)

% OUTPUTS:

% peaklLoc - The indicies of the identified peaks in x0
% peakMag - The magnitude of the identified peaks

% [peakLoc] = peakfinder (x0) returns the indicies of local

maxima that
are at least 1/4 the range of the data above surrounding

o\°

data

% [peakLoc] = peakfinder (x0,sel) returns the indicies of local
maxima

% that are at least sel above surrounding data.

% [peaklLoc] = peakfinder (x0,sel,thresh) returns the indicies
of local

% maxima that are at least sel above surrounding data and
larger

% (smaller) than thresh if you are finding maxima
(minima) .

% [peakLoc] = peakfinder (x0,sel,thresh,extrema) returns the
maxima of the

% data i1if extrema > 0 and the minima of the data if

extrema < 0

00 o

[peakLoc, peakMag] = peakfinder (x0,...) returns the indicies
of the

% local maxima as well as the magnitudes of those maxima

% If called with no output the identified maxima will be
plotted along
% with the input data.

0\
-+
Il

0:.0001:10;

3 x = 12*sin(10*2*pi*t)-3*sin(.1*2*pi*t)+randn(l,numel (t))
% x(1250:1255) = max(x);

% peakfinder (x)

% Perform error checking and set defaults if not passed in

error (nargchk (1,5,nargin, "struct'));
error (nargoutchk (0, 2, nargout, "struct'));
s = size(x0);

flipData = s(l) < s(2);

len0 = numel (x0);

if len0 ~= s(l1) && lenO ~= s(2)

error ('PEAKFINDER: Input', 'The input data must be a vector')
elseif isempty (x0)

varargout = {[],[]};

return;
end
if ~isreal (x0)

warning ('PEAKFINDER:NotReal', "Absolute value of data will be
used')

x0 = abs (x0);

end

if nargin < 2 || isempty(sel)
sel = (max(x0)-min(x0))/4;

elseif ~isnumeric(sel) || ~isreal (sel)
sel = (max(x0)-min(x0))/4;
warning (' PEAKFINDER: InvalidSel', ...

'The selectivity must be a real scalar. A selectivity
of %$.4g will be used', sel)
elseif numel (sel) > 1
warning ('PEAKFINDER: InvalidSel', ...
'The selectivity must be a scalar. The first
selectivity value in the vector will be used.')
sel = sel(l);

end

if nargin < 3 || isempty(thresh)
thresh = [];

elseif ~isnumeric (thresh) || ~isreal (thresh)
thresh = [];

warning (' PEAKFINDER: InvalidThreshold’', ...
'The threshold must be a real scalar. No threshold will
be used.')
elseif numel (thresh) > 1
thresh = thresh(1l);
warning (' PEAKFINDER: InvalidThreshold', ...
'The threshold must be a scalar. The first threshold
value in the vector will be used.')

end
if nargin < 4 || isempty(extrema)
extrema = 1;
else
extrema = sign(extrema(l)); % Should only be 1 or -1 but

make sure
if extrema ==
error ('PEAKFINDER:ZeroMaxima', 'Either 1 (for maxima) or
-1 (for minima) must be input for extrema');

end
end
if nargin < 5 || isempty(include endpoints)

include endpoints = true;
else

include endpoints = boolean (include endpoints);
end
x0 = extrema*x0(:); % Make it so we are finding maxima
regardless

o)

thresh = thresh*extrema; % Adjust threshold according to
extrema.

dx0 = diff(x0); % Find derivative

dx0 (dx0 == 0) = -eps; % This is so we find the first of repeated
values

ind = find(dx0(l:end-1) .*dx0(2:end) < 0)+1; % Find where the
derivative changes sign

% Include endpoints in potential peaks and valleys as desired
if include endpoints

x = [x0(1);x0(ind) ;x0(end)];

ind = [1;ind;len0];

minMag = min (x);
leftMin = minMag;
else
x = x0(ind) ;
minMag = min (x) ;
leftMin = x0(1);
end
% x only has the peaks, valleys, and possibly endpoints
len = numel (x);

if len > 2 % Function with peaks and valleys
% Set initial parameters for loop
tempMag = minMag;

foundPeak = false;

if include endpoints
% Deal with first point a little differently since

tacked it on

% Calculate the sign of the derivative since we tacked
the first

% point on it does not neccessarily alternate like the
rest.

signDx = sign(

if signDx (1) <
to the second

diff (x(1:3)));
=0

Q

% The first point is larger or equal

if signDx (1) == signDx(2) % Want alternating signs
x(2) = [1;
ind(2) = [];
len = len-1;

end

else % First point is smaller than the second

if signDx (1) == signDx(2) % Want alternating signs
x(1) = [1;
ind(1l) = [];
len = len-1;

end

end

% Skip the first point if it is smaller so we always start
on a

% maxima
1f x(1) >= x(2)
ii = 0;

else
i1 = 1;

end
% Preallocate max number of maxima
maxPeaks = ceil (len/2);
peakLoc = zeros (maxPeaks,1);
peakMag = zeros (maxPeaks,1);
cInd = 1;
% Loop through extrema which should be peaks and then
valleys
while ii < len
ii = ii+1l; % This is a peak
% Reset peak finding if we had a peak and the next peak
is bigger
% than the last or the left min was small enough to
reset.
if foundPeak
tempMag = minMag;
foundPeak = false;
end

[e)

% Make sure we don't iterate past the length of our

vector
if ii == len
break; $ We assign the last point differently out of
the loop

end

% Found new peak that was lager than temp mag and
selectivity larger

% than the minimum to its left.

if x(ii) > tempMag && x(ii) > leftMin + sel
tempLoc = ii;
tempMag = x(ii);

end

ii = ii+l1; % Move onto the valley

% Come down at least sel from peak

if ~foundPeak && tempMag > sel + x(ii)
foundPeak = true; % We have found a peak
leftMin = x(ii);
peakLoc (cInd) = temploc; % Add peak to index
peakMag (cInd) = tempMag;
cInd = cInd+1;

elseif x(ii) < leftMin % New left minima
leftMin = x(ii);

end

end

¢}

% Check end point
if include endpoints
if x(end) > tempMag && x(end) > leftMin + sel
peakLoc (cInd) = len;
peakMag (cInd) = x(end);
cInd = cInd + 1;
elseif ~foundPeak && tempMag > minMag % Check if we still
need to add the last point
peakLoc (cInd) = temploc;
peakMag (cInd) tempMag;
cInd = cInd +

1;
end
elseif ~foundPeak
if tempMag > x0(end) + sel
peakLoc (cInd) = temploc;
peakMag (cInd) = tempMag;
cInd = cInd + 1;
end
end

% Create output
peakInds = ind(peakLoc(l:cInd-1));
peakMags = peakMag(l:cInd-1);
else % This is a monotone function where an endpoint is the only
peak
[peakMags, xInd] = max(x);
if include endpoints && peakMags > minMag + sel
peakInds = ind(xInd);
else
peakMags = [];
peakInds [1;
end
end

(o)

% Apply threshold value. Since always finding maxima it will
always be
% larger than the thresh.
if ~isempty (thresh)
m = peakMags>thresh;
peakInds = peakInds (m);
peakMags = peakMags (m) ;
end

% Rotate data if needed
if flipData
peakMags = peakMags.';

peakInds = peakInds.';
end

% Change sign of data if was finding minima
if extrema < 0

peakMags = -peakMags;

x0 = -x0;
end

% Plot if no output desired
if nargout == 0
if isempty (peakInds)
disp('No significant peaks found')
else
figure;
plot(l:1en0,x0,"'.-
', peakInds, peakMags, 'ro', 'linewidth',2);
end
else
varargout = {peaklnds,peakMags};
end

